LIAISON LYON - TURIN / COLLEGAMENTO TORINO - LIONE

Partie commune franco-italienne Section transfrontalière

Parte comune italo-francese Sezione transfrontaliera

NOUVELLE LIGNE LYON TURIN – NUOVA LINEA TORINO LIONE PARTIE COMMUNE FRANCO-ITALIENNE – PARTE COMUNE ITALO-FRANCESE

REVISION DE L'AVANT-PROJET DE REFERENCE – REVISIONE DEL PROGETTO DEFINITIVO CUP C11J05000030001

EQUIPEMENTS-IMPIANTI

IMPIANTI FISSI DI TRAZINE ELETTRICA / INSTALATIONS FIXES DE TRACTION ELECTRIQUE SOTTOSTAZIONI ELETTRICHE DI TRAZIONE ELETTRICA/POC / SOUS STATIONS DE TRACTION/POC ELABORATI GENERALI / GENERALITES

RELAZIONE TECNICA GENERALE DI DIMENSIONAMENTO PRINCIPES DE DIMENSIONNEMENT

Indice	Date/Data	Modifications	/ Modifiche	Etabli r	ar / Concepi	o da 🛛 🗸	érifié par / Cor	atrollato de	Autoricá por / Autorizzeta da
maioe	Duw Duu	Emission pour vérificati	on C2B et validation	N	EDANCIO				Autorise par / Autorizzato da
0	26/10/2012	C3.0 / Emissione per	a verifica C2B e la	M.	FRANCIS	1111	G. BOV	/A	M. FORESTA
	a na anta an ta	validazion	ne C3.0	(ľ	FALFERR)	and the second	C. OGNIE	BENE	M. PANTALEO
A	31/12/2012	Emissione a seguito co	mmenti LTF e CCF	M.	FRANCIS	ч	G. BOV	/A	M. FORESTA
1111				(Г	FALFERR)	1.1	C. OGNIE	BENE	M. PANTALEO
Ъ	08/02/2012	Emissiono e socuito es	mmenti L TE e CCE	ME	TRACIS	6	2 a BOY	A	M. FORESTA
Б	08/02/2013	Emissione a seguito ec		(F	ALTERR)	1	C OGNIE	REAL-	M PANTAL
1111	11.000				1000	2012 12	0.00111		A A A A A A A A A A A A A A A A A A A
						114		V	WERI DELLA
				6.010	12.14	1.1.2 1.2		15	DOTT ING. 22
				1997				13	ILISCO MADCO
		<u> </u>		1.1.1	1.1.1		1.11	13.0	DODU INITION OF
		A Tecnimont	한 집 같은 것 같아?					5	DECERCIONALE
	1	11 Civil Const	truction					10	PHORESSIONALE S
		Dott. Ing. Aldo Man	carella					12	COLN/12982 5/
	C	ordine Ingegneri Prov. 70) n. 6271 H					1	SHOW OF
									×
CODE	P D	2 C 2 B	TS3	0	5	7 5	R		
DOC			É / Emittanta		Numar	. 5			
	Phase / Fase	Sigle etude / Sigla	Emetteur / Emittente		Numer		Indice	Statut / S	tato Type / Tipo
1.11	t ser part d		1.1.1.1.1.1.1.1		11012			Ē	
ADR	ESSE GED	C2B // //	30 01 00	10	01			19.20	ECHELLE / SCALA
INDI	RIZZOGED								
	TE	LTF sas	- 1091 Avenue de la Boisse - H	3P 80631 – F-	73006 CHAME	ERY CEDEX (France)	Ce projet	+ * +
			Tél. : +33 (0)4,79,68.	56.50 - Fax :	+33 (0)4.79.68.	56.75	est c	ofinancé par	è cofinanziato
/			RCS Chambéry 439	556 952 - TV	A FR 03439550	952	l'Unio	n européenne	📩 🕺 dall'Unione europea
LYC	ON TURIN F	ERROVIAIRE	RCS Chambéry 439 Propriété LTF Tous droits rése	556 952 – TV ervés – Proprie	A FR 03439550 tà LTF Tutti i o	952 liritti riservati	l'Unio (C	n européenne)G-TREN)	★ ★ dall'Unione europea ★ ★ ★ (TEN-T)
Lyc	ON TURIN F	ERROVIAIRE	RCS Chambéry 439 Propriété LTF Tous droits rése	556 952 – TV ervés – Proprie	A FR 03439556 tà LTF Tutti i o	952 liritti riservati	l'Unio (E	n européenne)G-TREN)	* * dall'Unione europea * ★ ★ (TEN-T)

SOMMAIRE / INDICE

RESUME/RIASSUNTO
1. GENERALITA'
2. NORME DI RIFERIMENTO
3. DOCUMENTI DI RIFERIMENTO
4. DATI DI BASE
4.1 CARATTERISTICHE DI TRACCIATO
4.2 MATERIALE ROTABILE
4.3 IPOTESI DI TRAFFICO 10
5. SIMULAZIONI DI MARCIA
5.1 TIPOLOGIA TRENO SIMULATO – TRENO ALTA VELOCITA' (V) 13
5.2 TIPOLOGIA TRENO SIMULATO
TRENO MERCI CONVENZIONALE DA 1600 t 16
5.3 TIPOLOGIA TRENO SIMULATO
_TRENO AUTOSTRADA FERROVIARIA A GRANDE SAGOMA (AF) DA 2050 t 19
6. SISTEMA DI ALIMENTAZIONE
6.1 DEFINIZIONE DELLE SCELTE DI BASE
6.2 ARCHITETTURA DI SISTEMA
6.3 RISULTATI DELLE SIMULAZIONI
NORMALE SERVIZIO DI TUTTE LE SSE CON ALIMENTAZIONE
INDIPENDENTE DEI DUE SENSI DI PERCORRENZA
6.4 CONDIZIONE DI DEGRADO COMPLETO DI UNA SSE
6.5 CONDIZIONI DI DEGRADO COMPLETO DI UN PATS
6.6 ANALISI TERMICA DELLA CATENARIA
7. CONCLUSIONI

RESUME/RIASSUNTO

Ce document illustre les résultats de l'étude dimensionnement technique de des installations fixes de traction électrique impianti (IFTE) de la ligne ferroviaire internationale Lyon - Turin.

Le système d'alimentation adopté est le 2x25 kV_{ca}. L'architecture du système est déjà prévu dans le projet de document préliminaire PP2-C2B-TS3-0033-A-PA-NOT–Note technique de dimensionnement du système de traction, déterminée en prenant en considération le il traffico di fase finale (Tappa 3). La trafic de la dernière étape (étape 3). La configuration prévoit la présence de 3 stations de traction électrique (SSE) le long de la ligne.

Dans le document la capacité du système d'alimentation a été vérifié par rapport à la charge électrique constituée par le trafic ferroviaire de la première étape (étape 1), e maintien de la puissance séparée dans les deux sens de circulation, à la fois dans la condition de fonctionnement normale de la plante, aussi bien en condition de vitesse dégradé.

Le dimensionnement du système électrique d'alimentation est réalisé par rapport à ce trafic ferroviaire et aux valeurs de tension (moyenne utile et minimale) au pantographe. On a considéré aussi la compatibilité entre la électrique demandée puissance et les équipements des IFTE (transformateurs).

Il presente documento illustra i risultati dello studio tecnico di dimensionamento degli della fissi di trazione tratta transfrontaliera Torino – Lione.

Il sistema d'alimentazione previsto è il 2x25 kV_{ca}. L'architettura del sistema risulta qualla già esposta nel documento di progetto preliminare PP2-C2B-TS3-0033-A-PA-NOT -Relazione tecnica di dimensionamento del sistema di trazione, determinata considerando configurazione prevede la presenza di 3 Sottostazioni Elettriche di trazione (SSE) lungo la linea.

Nel documento la potenzialità del sistema di alimentazione è stata verificata in relazione al carico elettrico costituito dal traffico ferroviario di prima fase (Tappa 1). mantenendo separata l'alimentazione nei due versi di percorrenza, sia in condizione di normale funzionamento degli impianti, sia in condizione di regime degradato.

L'idoneità del sistema elettrico all'alimentazione di tale traffico ferroviario è analizzata in relazione ai valori di tensione (media utile e minima) al pantografo e alla compatibilità del carico elettrico sulle apparecchiature degli impianti fissi di trazione.

1. GENERALITA'

La presente relazione tecnica illustra i risultati dell'analisi del dimensionamento delle installazioni fisse di trazione elettrica, destinate all'alimentazione della tratta transfrontaliera della linea ferroviaria Torino – Lione, realizzando un sistema di alimentazione $2x25 \text{ kV}_{ca}$.

Sulla base del carico costituito dal traffico ferroviario previsto nello scenario di prima fase (Tappa 1) e nell'ora di punta, è stata verificata la potenzialità dell'architettura di alimentazione, già determinata in fase di progettazione preliminare (documento *PP2-C2B-TS3-0033-A-PA-NOT – Relazione tecnica di dimensionamento del sistema di trazione*).

Le analisi sono state condotte considerando <u>indipendente</u> l'alimentazione dei due tunnel ferroviari e quindi, dei due sensi di percorrenza, in condizione di normale servizio di tutte le sottostazioni elettriche di trazione, in condizione di completo degrado di una SSE e in condizione di degrado di un posto di autotrasformazione semplice.

Lo studio di dimensionamento è realizzato tramite programmi dedicati che eseguono le simulazioni di marcia dei treni e forniscono le prestazioni di sistema, quali la qualità della tensione al pantografo, il carico della linea e delle apparecchiature di sottostazione.

2. NORME DI RIFERIMENTO

E' di seguito riepilogato l'elenco delle principali Norme alle quali si rimanda per le informazioni di dettaglio non esplicitamente riportate nella presente relazione:

- **Specifica Tecnica di Interoperabilità (STI),** Direttiva 96/48/CE Interoperabilità del sistema ferroviario transeuropeo ad alta velocità (2008/284/CE);
- EN 50119 Applicazioni ferroviarie, tranviarie, filoviarie e metropolitane Impianti fissi – Linee aeree di contatto per trazione elettrica Edizione 2010;
- EN 50163 Tensioni di alimentazione dei sistemi di trazione; Edizione 2005;
- EN 50388 Applicazione ferroviarie, tranviarie, filoviarie e metropolitane Alimentazione elettrica e materiale rotabile Criteri tecnici per il coordinamento tra l'alimentazione elettrica (sottostazione) e materiale rotabile per ottenere l'interoperabilità Edizione 2006;

3. DOCUMENTI DI RIFERIMENTO

Costituiscono inoltre parte integrante della presente relazione i documenti di seguito elencati, ai quali si rimanda per tutte le informazioni di dettaglio:

- PD2-C2A-TS3-0011-A-AP-NOT ESERCIZIO E MANUTENZIONE TRAFFICO DI PROGETTO
- **PD2-C2A-TS3-0012-A-AP-NOT** ESERCIZIO E MANUTENZIONE MODELLO DI ESERCIZIO DEFINITIVO DELLA LINEA NUOVA IN TAPPA 1
- **PD2-C2A-TS3-0026-A-AP-NOT** ESERCIZIO E MANUTENZIONE SINTESI DATI DI TRAFFICO PER STUDI TECNICI
- PD2-C2B-TS3-0577-0-PA-PLA SOTTOSTAZIONI ELETTRICHE DI TRAZIONE ELETTRICA SCHEMA DELL'ALIMENTAZIONE DELLA TRAZIONE ELETTRICA 2x25 kV
- PD2-C2B-TS3-0576-0-PA-NOT SOTTOSTAZIONI ELETTRICHE DI TRAZIONE ELETTRICA DESCRIZIONE GENERALE IMPIANTI 2x25 kV

• PP2-C2B-TS3-0033-A-PA-NOT SOTTOSTAZIONI ELETTRICHE DI TRAZIONE ELETTRICA RELAZIONE TECNICA DI DIMENSIONAMENTO DEL SISTEMA DI TRAZIONE

4. DATI DI BASE

4.1 CARATTERISTICHE DI TRACCIATO

Alla base del seguente studio vi è stata la definizione e la relativa implementazione del profilo altimetrico della linea, completo delle velocità massime di tracciato e dei tratti in galleria.

Nella Tab. 1 sono state riportate le progressive chilometriche, le relative pendenze dei tratti analizzati e i profili di velocità diversificati per tipologia di materiale rotabile.

Г

				VELO			
	Scoperto Galleria	Distanza [m] ±100 m	Pendenza [‰]	Lunghezza tratti [m]	TRENO VIAGGIATORI INTERNAZIONALE (V)	TRENO MERCI 1600 t (M)	TRENO AF 2050 t
SJM		0					
			5,905	1000			
		1000					
			9,772	1500			
		2500					
			6,573	900			
		3400					
			6,498	900			
		4300					
			6,447	1300			
		5600					
			6,477	4500			
		10100					
			6	1400	220	120	120
	Galleria	11500			220	120	120
			8,664	1200			
		12700					
			2	1100			
		13800					
			6,871	8500			
		22300					
			2	4100			
MODANE		26400					
			2	500			
		26900					
			-3,486	1200			
		28100					

٦

					VELO	СІТА' КМ/Н	
	Scoperto Galleria	Distanza [m] ±100 m	Pendenza [‰]	Lunghezza tratti [m]	TRENO VIAGGIATORI INTERNAZIONALE (V)	TRENO MERCI 1600 t (M)	TRENO AF 2050 t
		28100	10.000	12000			
		40100	-10,969	12000			
		40100	2	1200			
	Galleria	/1300	-2	1200			
	Galleria	41300	-11 184	12100			
		53400	11,101				
		55100	-11.184	100			
		53500	, -				
			-2	400			
		53900			220	120	120
			-2	1300	220	120	120
SUSA		55200					
			-2	300	-		
		55500					
			-4,794	600			
		56100					
			-12,475	400			
		56500					
			-12,475	100			
		56600	42.475	100			
		E6700	-12,475	100			
	Galleria	50700	_12 507	200			
	Galleria	56900	-12,507	200			
		50500	5.518	600			
		57500	3,310		90	90	90
	 		-6,171	600			
		58100					
			-6,171	100			
		58200					

Tab. 1 – Caratteristiche del tracciato

Il tracciato simulato è caratterizzato da una lunghezza complessiva di 58.2 km di cui gran parte in galleria a singolo binario.

4.2 MATERIALE ROTABILE

Per la verifica della potenzialità del sistema di trazione elettrica, sono stati considerati i dati di traffico e le tipologie del materiale rotabile come indicati nel documento:

• **PD2-C2A-TS3-0011-A-AP-NOT** ESERCIZIO E MANUTENZIONE TRAFFICO DI PROGETTO

Le simulazioni sono state effettuate considerando per i due versi di marcia, i traffici di punta di prima fase, in corrispondenza delle ore 6:00 e delle ore 19:00. Il primo orario più severo per il verso di percorrenza dispari, il secondo più severo per il verso pari.

Nelle tabelle sottostanti, sono riportate le caratteristiche principali del materiale rotabile utilizzato nelle simulazioni.

ETR 500	
Velocità di impostazione	220 km/h
Tensione nominale linea	25000 V
Potenza Ausiliari	800 kW
Massa complessiva	650 t
Rendimento Locomotiva	0,8
Coefficiente di inerzia masse rotanti	1,05
Decelerazione costante in piano	0.58 m/s ²

Tab. 2 – Modello treno viaggiatori alta velocità (V)

E402B DOPPIA TRAZIONE 1600 t								
Velocità di impostazione	120 km/h							
Tensione nominale linea	25000 V							
Potenza Ausiliari	300 kW							
Massa complessiva	1774 t							
Rendimento Locomotiva	0,8							
Coefficiente di inerzia masse rotanti	1,05							
Decelerazione costante in piano	0.3 m/s ²							

Tab. 3 – Modello treno convenzionali merci (M)

E402B DOPPIA TRAZIONE 2050 t								
Velocità di impostazione	120 km/h							
Tensione nominale linea	25000 V							
Potenza Ausiliari	300 kW							
Massa complessiva	2224 t							
Rendimento Locomotiva	0,8							
Coefficiente di inerzia masse rotanti	1,05							
Decelerazione costante in piano	0.3 m/s ²							

Tab. 4 – Modello treno Autostrada Ferroviaria a grande sagoma (AF)

4.3 IPOTESI DI TRAFFICO

Le ipotesi di traffico sono state realizzate conformemente a quanto indicato nel documento di riferimento:

• PD2-C2A-TS3-0026-A-AP-NOT ESERCIZIO E MANUTENZIONE SINTESI DATI DI TRAFFICO PER STUDI TECNICI

La verifica elettrica si basa sulla definizione di un'ora di punta e la verifica della conformità dei parametri elettrici di maggiore interesse (tensione al pantografo, carico SSE, riscaldamento conduttori) nelle condizioni di regime e di degrado elettrico. Per la tratta transfrontaliera Torino – Lione le simulazioni sono state effettuate considerando il traffico di prima fase, in corrispondenza delle ore 6:00 e delle ore 19:00, essendo rispettivamente per il verso dispari e pari, l'ora con il più elevato numero di treni ad alto assorbimento di potenza. Inoltre sono stati scelti questi due orari, perché caratterizzati complessivamente dal più alto numero di treni che percorrono la tratta transfrontaliera.

						\wedge													\wedge						
dir. FRANCIA- ITALIA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	тот
V	0	0	0	0	0	0	D	1	0	1	1	0	0	1	1	0	1	0	1	0	1	1	0	0	9
AFM	0	0	0	0	1	2	1	0	0	1	0	1	0	1	0	1	0	0	0	1	0	0	0	0	9
AF	0	0	0	0	0	0	1	0	2	1	2	1	2	1	2	1	1	3	1	1	1	4	0	2	26
Μ	3	0	0	0	1	7	6	5	2	2	2	1	3	1	1	3	2	2	3	3	2	2	3	2	56
ТОТ	3	0	0	0	2	9	8	6	4	5	5	3	5	4	4	5	4	5	5	5	4	7	3	4	100

Tab. 5 - Tratta transfrontaliera direzione Francia – Italia (ripartizione treni tappa 1)

						\land													\wedge						
dir. ITALIA- FRANCIA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	тот
V	0	0	0	0	0	1	1	0	0	1	0	1	0	1	1	0	0	1	1	1	0	0	0	0	9
AFM	0	0	1	1	1	0	0	0	1	0	1	0	1	0	0	1	0	1	0	1	0	0	0	0	9
AF	0	0	0	1	1	2	2	2	1	2	1	2	1	1	1	1	2	1	2	1	2	0	0	0	26
М	2	5	4	3	0	0	0	0	0	2	2	1	2	1	1	1	4	0	3	2	3	0	0	0	36
ТОТ	2	5	5	5	2	3	3	2	2	5	4	4	4	3	3	3	6	3	6	5	5	0	0	0	80

Tab. 6 - Tratta transfrontaliera direzione Italia – Francia (ripartizione treni tappa 1)

Nel seguito vengono riportati i traffici nelle ore di punta considerate e per i due sensi di marcia.

	TIPOLOGIA TRENO	MODELLO
1	Treno merci (M) – 1600 t	Tab. 3
2	Treno merci (M) – 1600 t	Tab. 3
3	Treno merci (M) – 1600 t	Tab. 3
4	Treno merci (M) – 1600 t	Tab. 3
5	Treno merci (M) – 1600 t	Tab. 3
6	Treno merci (M) – 1600 t	Tab. 3
7	Treno merci (M) – 1600 t	Tab. 3
8	Treno merci (M) – 1600 t	Tab. 3
9	Treno merci (M) – 1600 t	Tab. 3

Tab. 7 – Ora di punta simulata verso dispari – Traffico tappa 1 – Ore 6:00 – Cadenzamento 6 minuti

	TIPOLOGIA TRENO	MODELLO
1	Treno Alta Velocità	Tab. 2
2	Treno merci AF – 2050 t	Tab. 4
3	Treno merci AF – 2050 t	Tab. 4

Tab. 8 – Ora di punta simulata verso pari – Traffico tappa 1 – Ore 6:00 – Cadenzamento 20 minuti

	TIPOLOGIA TRENO	MODELLO
1	Treno Alta velocità (V)	Tab. 2
2	Treno merci (AF) – 2050 t	Tab. 4
3	Treno merci (M) – 1600 t	Tab. 3
4	Treno merci (M) – 1600 t	Tab. 3
5	Treno merci (M) – 1600 t	Tab. 3

Tab. 9 – Ora di punta simulata verso dispari – Traffico tappa 1 – Ore 19:00 – Cadenzamento 12 minuti

	TIPOLOGIA TRENO	MODELLO			
1	Treno Alta velocità (V)	Tab. 2			
2	Treno merci (AF) – 2050 t	Tab. 4			
3	Treno merci (AF) – 2050 t	Tab. 4			
4	Treno merci (M) – 1600 t	Tab. 3			
5	Treno merci (M) – 1600 t	Tab. 3			
6	Treno merci (M) – 1600 t	Tab. 3			

Tab. 10 - Ora di punta simulata verso pari - Traffico tappa 1 - Ore 18:00 - Cadenzamento 10 minuti

5. SIMULAZIONI DI MARCIA

5.1 TIPOLOGIA TRENO SIMULATO – TRENO ALTA VELOCITÀ (V)

Sono state eseguite le simulazioni di marcia per entrambi i sensi di percorrenza (St. Jean de Maurienne \rightarrow Susa / Susa \rightarrow St. Jean de Maurienne), del materiale rotabile Treno Alta Velocità (Tab. 2), al fine di determinare l'andamento della velocità e i relativi assorbimenti di potenza in funzione dello spazio (Fig. 1, Fig. 2, Fig. 3 e Fig. 4).

Sulla base dei dati forniti da esercizio, il materiale rotabile analizzato si considera passante nel POC di St. Jean de Maurienne alla velocità di 100 km/h, e passante il confine della tratta transfrontaliera alla velocità massima di 90 km/h.

La seguente tabella (Tab. 11) riassume inoltre le principali grandezze risultanti dalle simulazioni per entrambi i sensi di marcia.

	Binario Dispari	Binario Pari
Tempo di percorrenza	0:17:40	0:17:48
Energia totale assorbita [kWh]	1565.6	2155.1
Energia specifica media assorbita per treno [kWh/tr.km]	26.9	37
Energia specifica media assorbita per kt [kWh/kt.km]	41.4	56.9
Potenza media per treno [kW]	5316	7261.8
Velocità media [km/h]	197.6	196.1

Tab. 11 – Grandezze per senso di marcia della tratta transfrontaliera Torino – Lione – Treno Alta velocità

Fig. 2 - Marcia treno Alta Velocità (V) senso di percorrenza dispari – Potenza assorbita

Fig. 4 - Marcia treno Alta Velocità (V) senso di percorrenza pari – Potenza assorbita

5.2 TIPOLOGIA TRENO SIMULATO TRENO MERCI CONVENZIONALE DA 1600 T

Sono state eseguite le simulazioni di marcia per entrambi i sensi di percorrenza (St. Jean de Maurienne \rightarrow Susa / Susa \rightarrow St. Jean de Maurienne), del materiale rotabile Treno Merci Convenzionale da 1600 t (Tab. 3), al fine di determinare l'andamento della velocità e i relativi assorbimenti di potenza in funzione dello spazio (Fig. 5, Fig. 6, Fig. 7 e Fig. 8).

Sulla base dei dati forniti da esercizio, il materiale rotabile analizzato si considera passante nel POC di St. Jean de Maurienne alla velocità di 60 km/h per il verso dispari e di 120 km/h per il verso pari, mentre passante il confine di tratta internazionale alla velocità massima di 90 km/h.

La seguente tabella (Tab. 12) riassume inoltre le principali grandezze risultanti dalle simulazioni per entrambi i sensi di marcia.

	Binario Dispari	Binario Pari
Tempo di percorrenza	0:30:02	0:29:41
Energia totale assorbita [kWh]	3200	4600
Energia specifica media assorbita per treno [kWh/tr.km]	55	79
Energia specifica media assorbita per kt [kWh/kt.km]	61.8	89
Potenza media per treno [kW]	6390	9294
Velocità media [km/h]	116.2	117.6

Tab. 12 – Grandezze per senso di marcia della tratta transfrontaliera Torino – Lione

Treno merci convenzionale (M)

Fig. 5 - Marcia treno merci convenzionale (M) senso di percorrenza dispari – Profilo effettivo di velocità

Fig. 6 - Marcia treno merci convenzionale (M) senso di percorrenza dispari – Potenza assorbita

Fig. 8 - Marcia treno merci convenzionale (M) senso di percorrenza pari – Potenza assorbita

5.3 TIPOLOGIA TRENO SIMULATO TRENO AUTOSTRADA FERROVIARIA A GRANDE SAGOMA (AF) DA 2050 T

Sono state eseguite le simulazioni di marcia per entrambi i sensi di percorrenza (St. Jean de Maurienne \rightarrow Susa / Susa \rightarrow St. Jean de Maurienne), del materiale rotabile Treno Autostrada Ferroviaria a grande sagoma (AF) da 2050 t (Tab. 4), al fine di determinare l'andamento della velocità e i relativi assorbimenti di potenza in funzione dello spazio (Fig. 9, Fig. 10, Fig. 11 e Fig. 12).

Sulla base dei dati forniti da esercizio, il materiale rotabile analizzato si considera passante nel POC di St. Jean de Maurienne alla velocità di 60 km/h per il verso dispari e di 120 km/h per il verso pari, mentre passante il confine di tratta internazionale alla velocità massima di 90 km/h.

La seguente tabella (Tab. 13) riassume inoltre le principali grandezze risultanti dalle simulazioni per entrambi i sensi di marcia.

	Binario Dispari	Binario Pari
Tempo di percorrenza	0:30:38	0:31:18
Energia totale assorbita [kWh]	3868	5409
Energia specifica media assorbita per treno [kWh/tr.km]	66.5	92.9
Energia specifica media assorbita per kt [kWh/kt.km]	59.7	83.5
Potenza media per treno [kW]	7576	10368
Velocità media [km/h]	113.9	111.5

Tab. 13 – Grandezze per senso di marcia della tratta transfrontaliera Torino – Lione

Treno autostrada ferroviaria a grande sagoma da 2050 t

Fig. 9 - Marcia treno autostrada ferroviaria a grande sagoma (AF) senso di percorrenza dispari Profilo effettivo di velocità

Fig. 10 - Marcia treno autostrada ferroviaria a grande sagoma (AF) senso di percorrenza dispari Potenza assorbita

Fig. 12 - Marcia treno autostrada ferroviaria a grande sagoma (AF) senso di percorrenza pari Profilo effettivo di velocità

6. SISTEMA DI ALIMENTAZIONE

La scelta della configurazione finale, per il sistema $2x25 \text{ kV}_{ca}$, è stata ricavata tramite l'ottimizzazione delle configurazioni del sistema sulla base dei risultati ottenuti dalle simulazioni elettriche e ripresa in gran parte dallo studio effettuato in sede di progettazione preliminare (*PP2-C2B-TS3-0033-A-PA-NOT – Relazione tecnica di dimensionamento del sistema di trazione*).

Nella fase infrastrutturale di Tappa 1, la configurazione finale $2x25 \text{ kV}_{ca}$ della tratta transfrontaliera, prevede la presenza di 3 Sottostazioni Elettriche di trazione (SSE), di seguito elencate:

- St. Jean de Maurienne (pk 3+300);
- Modane (pk 32+800)
- Susa (pk 62+500)

La SSE di St. Jean de Maurienne alimenterà la tratta dalla pk 7+325, ovvero dal POC di separazione del sistema di alimentazione $2x25 \text{ kV}_{ca}$ dal sistema 1500 V_{cc}.

Sulla base del traffico previsto in Tappa 1 (Tab. 5, Tab. 6) e delle caratteristiche degli impianti fissi (par. 6.1), le simulazioni mostrano la possibilità di alimentazione separata dei due versi di percorrenza della tratta. Tale sistema di alimentazione risulta essere preferibile, rispetto a quella che vede la messa in parallelo delle due linee di contatto, in quanto possibili perturbazioni e/o interruzioni elettriche che possono verificarsi su un lato, non si ripercuotono nell'altro, e questo a vantaggio delle sicurezza di esercizio, essendo la tratta transfrontaliera sviluppata prevalentemente in galleria.

Il passo previsto tra i posti di autotrasformazione e le SSE è tale da garantire condizioni di tensione al pantografo concordi a quelle previste dalle norme di riferimento EN 50388 e EN 50163, in condizione di normale servizio di tutte le SSE e in condizioni di degrado di una SSE o di un posto di autotrasformazione.

L'architettura di sistema prevede per ogni SSE la presenza di due trasformatori di potenza, di cui uno in nomale esercizio, l'altro in riserva (ad esempio riserva calda).

Si esclude quindi la messa in parallelo dei due trasformatori di sottostazione, al fine di limitare le correnti di corto circuito in SSE ed essere conformi alle direttive STI sul coordinamento della protezione elettrica.

6.1 DEFINIZIONE DELLE SCELTE DI BASE

Di seguito si riportano nelle rispettive tabelle (Tab. 14, Tab. 15, Tab. 16) le caratteristiche del trasformatore, dell'autotrasformatore e della catenaria alla base delle simulazioni effettuate.

	Trasformatore
Potenza nominale [MVA]	80
Tensione nominale secondaria ¹ /2 avvolgimento [kV]	27,5
Tensione % di c.to c.to A-B/a-b riferita alla potenza nominale	10
Tensione % di c.to c.to A-B/a-0 riferita a ¹ /2 della potenza nominale	10
Perdite nel rame % della potenza nominale	0,2

Tab. 14 – Caratteristiche Trasformatore di SSE

	Autotrasformatore
Potenza nominale [MVA]	12
Tensione nominale secondaria ¹ /2 avvolgimento [kV]	27,5
Tensione % di c.to c.to a-b/a-0	1,33
Perdite nel rame % della potenza nominale	0,2

Tab. 15 – Caratteristiche Autotrasformatore di PAT

	Catenaria	
	Materiale	Sezione [mm ²]
Filo di contatto	CuMg 0,5	150
Corda Portante	Cu	181,6
Feeder	Cu	299
Trefolo ritorno principale	Al	3x147
Trefolo ritorno aggiuntivo	Cu	95

Tab. 16 – Caratteristiche Catenaria

I valori di resistenza elettrica dei componenti costituenti la catenaria sopra indicata, sono stati riferiti alla temperatura di 50 °C.

6.2 ARCHITETTURA DI SISTEMA

La configurazione $2x25 \text{ kV}_{ca}$ della tratta transfrontaliera della linea ferroviaria Torino – Lione, nello scenario infrastrutturale di prima fase, prevede la presenza di 3 Sottostazioni Elettriche di trazione (SSE), 10 (5 per senso di percorrenza) posti di autotrasformazione singoli (PATS) e 4 (2 per senso di percorrenza) posti di autotrasformazione doppio (PATD).

La tratta transfrontaliera risulta essere delimitata lato Francia dal POC di separazione del sistema $2x25 \text{ kV}_{ca}$, dal sistema 1500 V_{cc} e lato Italia dal POC di separazione con il sistema 3 kV_{cc} , dove a inizio la tratta nazionale.

Nelle seguenti tabelle sono riportate la denominazione delle sottostazioni elettriche previste con la corrispondente progressiva chilometrica e quella dei posti di parallelo collocati nei corrispondenti Rameaux.

SSE	pk [km + m]
St. Jean de Maurienne	3 + 300
Modane	32 + 500
Susa	62 + 500

Tab. 17 – Progressive di SSE

	pk [km + m]
PATS	10 + 437
	26 + 757
	41 +839
	55 + 166
	0 + 244 ICD

Tab. 18 – Rameau di posti di autotrasformazione semplice – Senso dispari

Tab. 19 - Rameau di posti di autotrasformazione semplice - Senso pari

Tab. 20 – Rameau di posti di autotrasformazione doppio

Il passo tra i posti di parallelo (6,5 - 8,6 km), è il risultato della ottimizzazione delle configurazioni del sistema sulla base dei risultati ottenuti dalle simulazioni, per garantire la qualità della tensione al pantografo imposta dalle norme di riferimento e il carico sulle macchine, sia in condizione di normale funzionamento, sia in condizioni di degrado. I tratti neutri sono disposti in corrispondenza della SSE di Modane ed in ogni PATD.

Di seguito si riporta in Fig. 13, lo schema di alimentazione semplificato della tratta.

6.3 **RISULTATI DELLE SIMULAZIONI**

Le configurazioni analizzate per valutare la potenzialità del sistema di alimentazione, sono quelle che minimizzano il numero di tratti neutri attivi e riguardano le condizioni di:

- Normale servizio di tutte le SSE, con alimentazione indipendente dei due sensi di percorrenza;
- Condizione di degrado completo di una SSE, con alimentazione indipendente dei due sensi di percorrenza;
- Condizione di degrado completo di un PATS, con alimentazione indipendente dei due sensi di percorrenza.

Tutte le condizioni di verifica sono state effettuate considerando i traffici di prima fase, in corrispondenza delle ore 6:00 e delle ore 19:00, essendo rispettivamente per il verso dispari e pari, l'ora con il più elevato numero di treni ad alto assorbimento di potenza.

La condizione di degrado di un trasformatore di trazione di SSE non è analizzata, poiché insita nell'analisi svolta che considera in condizione di regime elettrico un unico trasformatore in esercizio per SSE.

Di seguito sono riportati i risultati per le condizioni di sistema sopra esposte.

NORMALE SERVIZIO DI TUTTE LE SSE CON ALIMENTAZIONE INDIPENDENTE DEI DUE SENSI DI PERCORRENZA

La Fig. 14 rappresenta le zone elettriche proprie di ogni sottostazione di trazione in condizione di normale servizio del sistema e con alimentazione indipendente dei due sensi di percorrenza.

Fig. 14 – Sezioni elettriche in condizioni di regime elettrico – alimentazione indipendente dei versi di marcia

Si riportano di seguito i risultati relativi ai due versi di percorrenza analizzati e per i due orari di punta.

BINARIO DISPARI – TRAFFICO DI TAPPA 1 – ORE 6:00

Nelle seguenti tabelle (Tab. 21, Tab. 22) sono riportati i valori di potenza assorbita dalla rete primaria e sugli avvolgimenti del trasformatore di trazione, in relazione al verso dispari di percorrenza. I valori di potenza media e media quadratica sono calcolati considerando l'intero intervallo dell'ora simulata.

	Potenza assorbita dalla primaria [kVA]		
SSE	Media Massima		
SJ de Maurienne	22295	44135	
Modane	1299	10333	
Susa	1158	7810	

Tab. 21 – Potenza assorbita dalla rete primaria

SSE	Avvolgimenti		Potenza media quadratica avvolgimenti di trafo [kVA]
	Prima	io	26510
SJ de Maurienne	Secondario	LC	15345
Maurienne		Feeder	11192
	Primai	io	2887
Modane	Secondario	LC	2062
		Feeder	935
	Prima	io	3272
Susa	Secondario	LC	2254
		Feeder	1017

Tab. 22 – Potenza media quadratica avvolgimenti

I risultati globali delle simulazioni in relazione al verso dispari di percorrenza sono riportati nella seguente tabella.

	Normale servizio
	Binario Dispari
Potenza media assorbita dal sistema [kVA]	24752
Potenza massima assorbita dal sistema [kVA]	44779
Potenza reale media fornita complessivamente dalle SSE [kW]	22023
Potenza specifica corrispondente [MW/km linea]	0.378
Potenza reattiva media fornita da tutte le SSE [kVar]	8685
Fattore di potenza medio all'uscita dalle SSE	0.93
Rendimento medio della linea di contatto [%]	98.29
Potenza reale media richiesta all'archetto [kW]	6414
Potenza reale media fornita all'archetto [kW]	6414
Corrente media fornita all'archetto [A]	297
Potenza reale massima richiesta all'archetto [kW]	15306
Tensione media [V]	26077
Tensione media UIC [V]	25306
Tensione minima [V]	23394

Tab. 23 – Risultati globali, Binario Dispari

La seguente tabella riassume i valori di potenza media assorbita relativa agli autotrasformatori presenti in linea.

Autotrasformatore	Potenza [kW]
10 + 437	6655
18 + 090	7480
26 + 757	9020
41 + 839	770
48 + 506	1210
48 + 839	605
55 + 166	275
0 + 244 ICD	1155

Tab. 24 – Potenza autotrasformatori, Binario Dispari

Dalla Tab. 24 non si registrano sovraccarichi degli autotrasformatori.

In Fig. 15 è riparata la distribuzione percentuale delle tensioni globali all'archetto.

Fig. 15 – Distribuzione globale tensioni all'archetto, Binario Dispari

Il valore di <u>tensione minima</u> per il verso dispari (St. Jean de Maurienne \rightarrow Susa) di 23394 V, localizzato al km 26 + 389; ed il valore di <u>tensione media UIC</u> di 25306 V, sono ampiamente superiori ai rispettivi limiti normativi (V_{MIN} = 17500 V; V_{UIC} = 22500 V).

Dalla distribuzione percentuale sopra riportata si denota come la tensione all'archetto risulti essere maggiormente compresa in termini percentuali nella fascia di tensione 26000-25000 V e superiori a 26000 V. I valori di tensione più bassi (2%) risultano essere registrati nella fascia di tensione 24000-23000 V.

Dalle tabelle relative sullo stato di funzionamento delle SSE (Tab. 21, Tab. 22), non si registrano per il verso di percorrenza, sovraccarichi dei trasformatori.

BINARIO PARI – TRAFFICO DI TAPPA 1 – ORE 6:00

Nelle seguenti tabelle (Tab. 25, Tab. 26) sono riportati i valori di potenza assorbita dalla rete primaria e sugli avvolgimenti del trasformatore di trazione, in relazione al verso pari di percorrenza. I valori di potenza media e media quadratica sono calcolati considerando l'intero intervallo dell'ora simulata.

	Potenza assorbita dalla primaria [kVA]		
SSE	Media	Massima	
SJ de Maurienne	2129	18772	
Modane	4726	17279	
Susa	5302	17270	

Tab. 25 – Potenza assorbita dalla rete primaria

SSE	Avvolgimenti		Potenza media quadratica avvolgimenti di trafo [kVA]
	Prima	io	3575
SJ de Maurienne	Secondario	LC	1897
Maurienne		Feeder	1677
	Primario		8772
Modane	Secondario	LC	5775
		Feeder	3162
	Primario		11797
Susa	Secondario	LC	7727
		Feeder	4235

Tab. 26 – Potenza media quadratica avvolgimenti

I risultati globali delle simulazioni in relazione al verso pari di percorrenza sono riportati nella seguente tabella.

	Normale servizio
	Binario Pari
Potenza media assorbita dal sistema [kVA]	12156
Potenza massima assorbita dal sistema [kVA]	25622
Potenza reale media fornita complessivamente dalle SSE [kW]	11071
Potenza specifica corrispondente [MW/km linea]	0.19
Potenza reattiva media fornita da tutte le SSE [kVar]	4026
Fattore di potenza medio all'uscita dalle SSE	0.939
Rendimento medio della linea di contatto [%]	99.08
Potenza reale media richiesta all'archetto [kW]	9687
Potenza reale media fornita all'archetto [kW]	9686
Corrente media fornita all'archetto [A]	390
Potenza reale massima richiesta all'archetto [kW]	15308
Tensione media [V]	26304
Tensione media UIC [V]	26119
Tensione minima [V]	23588

Tab. 27 – Risultati globali, Binario Pari

La seguente tabella riassume i valori di potenza media assorbita relativa agli autotrasformatori presenti in linea.

Autotrasformatore	Potenza [kW]	
10 + 437	770	
18 +090	1045	
26 + 757	2090	
41 +839	3740	
48 + 506	2970	
48 + 839	2970	
55 + 166	3795	
0 + 175 ICP	2090	

Tab.	28	– Potenza	autotrasformatori,	Binario	Pari
------	----	-----------	--------------------	---------	------

Dalla Tab. 28 non si registrano sovraccarichi degli autotrasformatori.

In Fig. 16 è riparata la distribuzione percentuale delle tensioni globali all'archetto.

Fig. 16 – Distribuzione globale tensioni all'archetto, Binario Pari

Il valore di <u>tensione minima</u> per il verso pari (Susa \rightarrow St. Jean de Maurienne) di 23588 V, localizzato al km 26 + 377; ed il valore di <u>tensione media UIC</u> di 26119 V, sono ampiamente superiori ai rispettivi limiti normativi (V_{MIN} = 17500 V; V_{UIC} = 22500 V).

Dalla distribuzione percentuale sopra riportata si denota come la tensione all'archetto risulti essere maggiormente compresa in termini percentuali nella fascia di tensione 26000-25000 V e superiori a 26000 V. I valori di tensione più bassi (0.4%) risultano essere registrati nella fascia di tensione 24000-23000 V.

Dalle tabelle relative sullo stato di funzionamento delle SSE (Tab. 25, Tab. 26), non si registrano per il verso di percorrenza, sovraccarichi dei trasformatori.

BINARIO DISPARI – TRAFFICO DI TAPPA 1 – ORE 19:00

Nelle seguenti tabelle (Tab. 29, Tab. 30) sono riportati i valori di potenza assorbita dalla rete primaria e sugli avvolgimenti del trasformatore di trazione, in relazione al verso dispari di percorrenza. I valori di potenza media e media quadratica sono calcolati considerando l'intero intervallo dell'ora simulata.

	Potenza assorbita dalla primaria [kVA]		
SSE	Media	Massima	
SJ de Maurienne	11609	32290	
Modane	715	12497	
Susa	627	9322	

Tab. 29 – Potenza assorbita dalla rete primaria

SSE	Avvolgimenti		Potenza media quadratica avvolgimenti di trafo [kVA]
	Primario		14080
SJ de Maurienne	Secondario	LC	8167
		Feeder	5967
	Primario		2090
Modane	Secondario	LC	1485
		Feeder	660
	Primario		2337
Susa	Secondario	LC	1622
		Feeder	714

Tab. 30 – Potenza media quadratica avvolgimenti

I risultati globali delle simulazioni in relazione al verso dispari di percorrenza sono riportati nella seguente tabella.

	Normale servizio
	Binario Dispari
Potenza media assorbita dal sistema [kVA]	12951
Potenza massima assorbita dal sistema [kVA]	32290
Potenza reale media fornita complessivamente dalle SSE [kW]	11734
Potenza specifica corrispondente [MW/km linea]	0.201
Potenza reattiva media fornita da tutte le SSE [kVar]	4393
Fattore di potenza medio all'uscita dalle SSE	0.936
Rendimento medio della linea di contatto [%]	98.79
Potenza reale media richiesta all'archetto [kW]	6538
Potenza reale media fornita all'archetto [kW]	6538
Corrente media fornita all'archetto [A]	266
Potenza reale massima richiesta all'archetto [kW]	15306
Tensione media [V]	26409
Tensione media UIC [V]	25905
Tensione minima [V]	24156

Tab. 31 – Risultati globali, Binario Dispari

La seguente tabella riassume i valori di potenza media assorbita relativa agli autotrasformatori presenti in linea.

Autotrasformatore	Potenza [kW]
10 + 437	4125
18 + 090	4180
26 + 757	5500
41 + 839	550
48 + 506	880
48 + 839	165
55 + 166	440
0 + 244 ICD	825

Tab. 32 – Potenza autotrasformatori, Binario Dispari
Dalla Tab. 32 non si registrano sovraccarichi degli autotrasformatori.

In Fig. 17 è riporata la distribuzione percentuale delle tensioni globali all'archetto.

Fig. 17 – Distribuzione globale tensioni all'archetto, Binario Dispari

Il valore di <u>tensione minima</u> per il verso dispari (St. Jean de Maurienne \rightarrow Susa) di 24156 V, localizzato al km 26 + 381; ed il valore di <u>tensione media UIC</u> di 25905 V, sono ampiamente superiori ai rispettivi limiti normativi (V_{MIN} = 17500 V; V_{UIC} = 22500 V).

Dalla distribuzione percentuale sopra riportata si denota come la tensione all'archetto risulti essere maggiormente compresa in termini percentuali nella fascia di tensione 26000-25000 V e superiori a 26000 V. I valori di tensione più bassi (3 %) risultano essere registrati nella fascia di tensione 25000-24000 V.

Dalle tabelle relative sullo stato di funzionamento delle SSE (Tab. 29, Tab. 30), non si registrano per il verso di percorrenza, sovraccarichi dei trasformatori.

BINARIO PARI – TRAFFICO TAPPA 1 – ORE 19:00

Nelle seguenti tabelle (Tab. 33, Tab. 34) sono riportati i valori di potenza assorbita dalla rete primaria e sugli avvolgimenti del trasformatore di trazione, in relazione al verso pari di percorrenza. I valori di potenza media e media quadratica sono calcolati considerando l'intero intervallo dell'ora simulata.

	Potenza assorbita dalla primaria [kVA]			
SSE	Media	Massima		
SJ de Maurienne	3855	23029		
Modane	8906	17290		
Susa	10089	17297		

Tab. 33 – Potenza assorbita dalla rete primaria

SSE	Avvolgin	nenti	Potenza media quadratica avvolgimenti di trafo [kVA]
	Prima	io	5280
SJ de Maurienne	Secondario	LC	2887
Waurienne		Feeder	2392
	Prima	io	12072
Modane		LC	7865
	Secondario	Feeder	4372
	Prima	io	16500
Susa	a 1 .	LC	10670
	Secondario	Feeder	5967

Tab. 34 – Potenza media quadratica avvolgimenti

I risultati globali delle simulazioni in relazione al verso pari di percorrenza sono riportati nella seguente tabella.

	Normale servizio
	Binario Pari
Potenza media assorbita dal sistema [kVA]	22850
Potenza massima assorbita dal sistema [kVA]	42593
Potenza reale media fornita complessivamente dalle SSE [kW]	20797
Potenza specifica corrispondente [MW/km linea]	0.357
Potenza reattiva media fornita da tutte le SSE [kVar]	7568
Fattore di potenza medio all'uscita dalle SSE	0.939
Rendimento medio della linea di contatto [%]	99.07
Potenza reale media richiesta all'archetto [kW]	9482
Potenza reale media fornita all'archetto [kW]	9482
Corrente media fornita all'archetto [A]	382
Potenza reale massima richiesta all'archetto [kW]	15310
Tensione media [V]	26291
Tensione media UIC [V]	26100
Tensione minima [V]	23557

Tab. 35 – Risultati globali, Binario Pari

La seguente tabella riassume i valori di potenza media assorbita relativa agli autotrasformatori presenti in linea.

Autotrasformatore	Potenza [kW]
10 + 437	1045
18 +090	1430
26 + 757	2640
41 +839	5280
48 + 506	4015
48 + 839	4180
55 + 166	5335
0 + 175 ICP	2970

Tab. 36 – Potenza autotrasformatori, Binario Pari

Dalla Tab. 36 non si registrano sovraccarichi degli autotrasformatori.

In Fig. 18 è riparata la distribuzione percentuale delle tensioni globali all'archetto.

Fig. 18 – Distribuzione globale tensioni all'archetto, Binario Pari

Il valore di <u>tensione minima</u> per il verso pari (Susa \rightarrow St. Jean de Maurienne) di 23557 V, localizzato al km 26 + 377; ed il valore di <u>tensione media UIC</u> di 26100 V, sono ampiamente superiori ai rispettivi limiti normativi (V_{MIN} = 17500 V; V_{UIC} = 22500 V).

Dalla distribuzione percentuale sopra riportata si denota come la tensione all'archetto risulti essere maggiormente compresa in termini percentuali nella fascia di tensione 26000-2500 V e superiori a 26000 V. I valori di tensione più bassi (0.2 %) risultano essere registrati nella fascia di tensione 24000-23000 V.

Dalle tabelle relative sullo stato di funzionamento delle SSE (Tab. 33, Tab. 34), non si registrano per il verso di percorrenza, sovraccarichi dei trasformatori.

6.4 CONDIZIONE DI DEGRADO COMPLETO DI UNA SSE

Nel caso di fuori servizio di una SSE, si è analizzata la condizione in cui la SSE adiacente alimenti la sezione corrispondente con un unico trasformatore di potenza, secondo la configurazione che minimizza il numero di tratti neutri attivi.

A seguito della tipologia di traffico di Tappa 1, la condizione di degrado completo di una SSE, non determina la necessità di alimentazione che preveda la messa in parallelo elettrico tra le linee di contatto e i feeders dei due binari, provvedimento che si adotta per beneficiare della suddivisione delle correnti sui conduttori (catenaria e feeder), limitando così le cadute di tensione in linea. Difatti come osservabile nelle tabelle successive, mantenendo le linee di contatto separate, le tensioni restano al disopra dei limiti normativi.

Configurazioni relativamente critiche si verificano con il fuori servizio non contemporaneo della SSE di Modane e della SSE di Susa, nelle quali la restante SSE si trova ad alimentare una sezione di linea di circa 32 km. Anche in queste condizioni, vista la natura degli impianti fissi, il sistema alimenta i treni previsti rispettando tutti i vincoli di qualità normativi.

Le seguenti figure (Fig. 19, Fig. 20, Fig. 21) rappresentano le zone elettriche proprie di ogni sottostazione in condizione di degrado ciclico di SSE.

Fig. 19 - Sezioni elettriche in condizione di degrado completo della SSE St. Jean de Maurienne

Fig. 20 – Sezioni elettriche in condizione di degrado completo della SSE Modane

Fig. 21 – Sezioni elettriche in condizione di degrado completo della SSE Susa

CONDIZIONE DI DEGRADO COMPLETO DI UNA SSE – TRAFFICO DI TAPPA 1 – ORE 6:00 – VERSO DISPARI

In Tab. 37 e Tab. 38 sono riportati i valori di potenza assorbita dalla rete primaria e sugli avvolgimenti del trasformatore di trazione, in relazione al degrado di SSE analizzato e nel verso di percorrenza Dispari. I valori di potenza media e media quadratica sono calcolati considerando l'intero intervallo dell'ora simulata.

	Potenza assorbita dalla primaria [kVA]						
	SJ de N	SJ de Maurienne Modane				de Maurienne Modane Susa	
SSE Fuori Servizio	Media	Massima	Media	Massima	Media	Massima	
SJ de Maurienne			22653	45033	2487	11275	
Modane	22295	44135			2487	11275	
Susa	22295	44135	2477	10663			

Tab. 37 – Potenza fornita dalla rete primaria in caso di degrado di SSE – Verso Dispari – Traffico ore 6:00

			Potenza media quadratica avvolgimenti di trafo [kVA]			
SSE Fuori Servizio	Avvolgin	nenti	SJ de Maurienne	Modane	Susa	
	Prima	io		27005	5142	
SJ de Maurienne	Sacandaria	LC		15702	3107	
	Secondario	Feeder		11330	2089	
	Prima		26510		5142	
Modane	Secondario	LC	15345		3107	
		Feeder	11192		2089	
Prim		rio	26510	3932		
Susa	Secondario	LC	15345	2502		
		Feeder	11192	1540		

Tab. 38 – Potenza media quadratica avvolgimenti – Verso Dispari – Traffico ore 6:00

Si riportano nella seguente tabella i risultati globali delle simulazioni in relazione al degrado di SSE analizzato.

	SSE fuori servizio		
	SJ de Maurienne	Modane	Susa
Potenza media assorbita dal sistema [kVA]	25139	24782	24772
Potenza massima assorbita dal sistema [kVA]	45677	44780	44780
Potenza reale media fornita complessivamente dalle SSE [kW]	22151	22033	22031
Potenza specifica corrispondente [MW/km linea]	0.38	0.378	0.378
Potenza reattiva media fornita da tutte le SSE [kVar]	9219	8727	8720
Fattore di potenza medio all'uscita dalle SSE	0.923	0.929	0.929
Rendimento medio della linea di contatto [%]	97.72	98.25	98.26
Potenza reale media richiesta all'archetto [kW]	6414	6414	6414
Potenza reale media fornita all'archetto [kW]	6414	6414	6414
Corrente media fornita all'archetto [A]	271	267	267
Potenza reale massima richiesta all'archetto [kW]	15306	15306	15306
Tensione media [V]	25879	26006	26007
Tensione media UIC [V]	24914	25276	25286
Tensione minima [V]	23043	23394	23394

Tab. 39 – Risultati globali, Fuori servizio SSE – Verso Dispari – Traffico ore 6:00

La successiva tabella riassume i valori di potenza media assorbita, relativi agli autotrasformatori presenti in linea, in relazione al degrado di SSE analizzato, dove si riscontra che tutte le macchine funzionano sempre al di sotto della potenza nominale di 12 MVA.

	Potenza [kW]				
	SSE	fuori servizio			
Autotrasformatore	SJ de Modane Susa				
10 + 437	8965	6655	6655		
18 +090	7590	7480	7480		
26 + 757	6930	9020	9020		
41 +839	1650	1650	770		
48 + 506	1100	1100	989		
55 + 166	770	770	660		
0 + 244 ICD	1155	1155	1485		

Tab. 40 – Potenza autotrasformatori, Fuori servizio SSE – Verso Dispari – Traffico ore 6:00

Il valore <u>minimo di tensione</u> per il verso dispari (St. Jean de Maurienne \rightarrow Susa) di 23043 V, localizzato al km 1 + 122, ed il valore minimo della <u>tensione media UIC</u> di 24914 V, si riscontrano nel caso di fuori servizio della SSE St. Jean de Maurienne. Comunque tali valori di tensione restano ampiamente superiori ai rispettivi limiti normativi (V_{MIN} = 17500 V; V_{UIC} = 22500 V).

Fig. 22 – Distribuzione globale tensioni all'archetto, SSE SJ de Maurienne fuori servizio – Verso Dispari Traffico ore 6:00

Fig. 23 – Distribuzione globale tensioni all'archetto, SSE Modane fuori servizio – Verso Dispari Traffico ore 6:00

Fig. 24 – Distribuzione globale tensioni all'archetto, SSE Susa fuori servizio– Verso Dispari Traffico ore 6:00

Dalle distribuzioni percentuali di tensione all'archetto sopra riportate, si denota come nel caso di fuori servizio completo della SSE di St. Jean de Maurienne (situazione più critica per il verso dispari), la tensione all'archetto risulti essere maggiormente compresa in termini percentuali nella fascia di tensione 26000-25000 V e superiori a 26000 V. I valori di tensione più bassi (9.4 %) risultano essere registrati nella fascia di tensione 24000-23000 V.

CONDIZIONE DI DEGRADO COMPLETO DI UNA SSE – TRAFFICO DI TAPPA 1 – ORE 6:00 – VERSO PARI

Nelle Tab. 41 e Tab. 42 sono riportati i valori di potenza assorbita dalla rete primaria e sugli avvolgimenti del trasformatore di trazione in relazione al degrado di SSE analizzato e nel verso di percorrenza Pari. I valori di potenza media e media quadratica sono calcolati considerando l'intero intervallo dell'ora simulata.

	Potenza assorbita dalla primaria [kVA]						
	SJ de N	SJ de Maurienne Modane				Susa	
SSE Fuori Servizio	Media	Massima	Media	Massima	Media	Massima	
SJ de Maurienne			2106	17028	10257	18810	
Modane	2129	18772			10257	18810	
Susa	2129	18772	10224	18032			

Tab. 41 – Potenza fornita dalla rete primaria in caso di degrado di SSE – Verso Pari – Traffico ore 6:00

			Potenza media quadratica avvolgimenti di trafo [kVA]			
SSE Fuori Servizio	Avvolgin	nenti	SJ de Maurienne	Modane	Susa	
	Prima	io		3492	15840	
SJ de Maurienne	Sacandaria	LC		2227	9515	
	Secondario	Feeder		1320	6489	
	Prima		3575		15840	
Modane	Secondario	LC	1897		9515	
		Feeder	1677		6489	
Prima		rio	3575	12952		
Susa	Secondario	LC	1897	7645		
		Feeder	1677	5472		

Tab. 42 – Potenza media quadratica avvolgimenti – Verso Pari – Traffico ore 6:00

Si riportano nella seguente tabella i risultati globali delle simulazioni in relazione al degrado di SSE analizzato.

	SSE fuori servizio		
	SJ de Maurienne	Modane	Susa
Potenza media assorbita dal sistema [kVA]	12363	12386	12352
Potenza massima assorbita dal sistema [kVA]	25663	25648	26427
Potenza reale media fornita complessivamente dalle SSE [kW]	11140	11150	11154
Potenza specifica corrispondente [MW/km linea]	0.191	0.191	0.191
Potenza reattiva media fornita da tutte le SSE [kVar]	4299	4336	4357
Fattore di potenza medio all'uscita dalle SSE	0.932	0.932	0.931
Rendimento medio della linea di contatto [%]	98.46	98.38	98.34
Potenza reale media richiesta all'archetto [kW]	9687	9687	9687
Potenza reale media fornita all'archetto [kW]	9686	9686	9686
Corrente media fornita all'archetto [A]	397	398	397
Potenza reale massima richiesta all'archetto [kW]	15308	15308	15308
Tensione media [V]	26036	25997	26023
Tensione media UIC [V]	25681	25634	25704
Tensione minima [V]	23562	23562	23588

Tab. 43 – Risultati globali, Fuori servizio SSE – Verso Pari – Traffico ore 6:00

La successiva tabella riassume i valori di potenza media assorbita, relativi agli autotrasformatori presenti in linea, in relazione al degrado di SSE analizzato, dove si riscontra che tutte le macchine funzionano sempre al di sotto della potenza nominale di 12 MVA.

	Potenza [kW]				
	SSE	fuori servizio			
Autotrasformatore	SJ de Modane Susa				
10 + 437	880	770	770		
18 +090	989	1045	1045		
26 + 757	1375	2090	2090		
41 +839	3850	5555	3685		
48 + 506	3574	3574	3300		
55 + 166	5555	3850	3630		
0 + 175 ICP	2145	2145	3574		

Tab. 44 – Potenza autotrasformatori, Fuori servizio SSE – Verso Pari – Traffico ore 6:00

Il valore <u>minimo di tensione</u> per il verso pari (Susa \rightarrow St. Jean de Maurienne) di 23562 V, localizzato al km 26 + 377, ed il valore minimo della <u>tensione media UIC</u> di 25634 V, si riscontrano nel caso di fuori servizio della SSE Modane. Comunque tali valori di tensione restano ampiamente superiori ai rispettivi limiti normativi (V_{MIN} = 17500 V; V_{UIC} = 22500 V).

Fig. 25 – Distribuzione globale tensioni all'archetto, SSE SJ de Maurienne fuori servizio – Verso Pari Traffico ore 6:00

Fig. 26 – Distribuzione globale tensioni all'archetto, SSE Modane fuori servizio – Verso Pari Traffico ore 6:00

Fig. 27 – Distribuzione globale tensioni all'archetto, SSE Susa fuori servizio– Verso Pari Traffico ore 6:00

Dalle distribuzioni percentuali di tensione all'archetto sopra riportate, si denota come nel caso di fuori servizio completo della SSE di Modane (situazione più critica per il verso pari), la tensione all'archetto risulti essere comunque maggiormente compresa in termini percentuali, nella fascia di tensione 26000-25000 V e superiori a 26000 V. I valori di tensione più bassi (1.1 %) risultano essere registrati nella fascia di tensione 24000-23000 V.

CONDIZIONE DI DEGRADO COMPLETO DI UNA SSE – TRAFFICO DI TAPPA 1 – ORE 19:00 – VERSO DISPARI

Nelle Tab. 45 e Tab. 46 sono riportati i valori di potenza assorbita dalla rete primaria e sugli avvolgimenti del trasformatore di trazione, in relazione al degrado di SSE analizzato e nel verso di percorrenza Dispari. I valori di potenza media e media quadratica sono calcolati considerando l'intero intervallo dell'ora simulata.

	Potenza assorbita dalla primaria [kVA]					
	SJ de N	Jaurienne	Modane		Susa	
SSE Fuori Servizio	Media	Massima	Media	Massima	Media	Massima
SJ de Maurienne			11693	32367	1372	13997
Modane	11609	32290			1372	13997
Susa	11609	32290	1354	12582		

Tab. 45 – Potenza fornita dalla rete primaria in caso di degrado di SSE – Verso Dispari – Traffico ore 19:00

			Potenza media quadi	ratica avvolgime	nti di trafo [kVA]
SSE Fuori Servizio	Avvolgin	nenti	SJ de Maurienne	Modane	Susa
	Prima	rio		14217	3712
SJ de Maurienne	Sacandaria	LC		8305	2062
	Secondario	Feeder		5967	1677
	Prima		14080		3712
Modane	Secondario	LC	8167		2062
		Feeder	5967		1677
	Prima	rio	14080	2750	
Susa	Secondario	LC	8167	1732	
		Feeder	5967	1100	

Tab. 46 – Potenza media quadratica avvolgimenti – Verso Dispari – Traffico ore 19:00

Si riportano nella seguente tabella i risultati globali delle simulazioni in relazione al degrado di SSE analizzato.

	SSE fuori servizio		0
	SJ de Maurienne	Modane	Susa
Potenza media assorbita dal sistema [kVA]	13065	12981	12964
Potenza massima assorbita dal sistema [kVA]	32367	32290	32290
Potenza reale media fornita complessivamente dalle SSE [kW]	11772	11741	11739
Potenza specifica corrispondente [MW/km linea]	0.202	0.201	0.201
Potenza reattiva media fornita da tutte le SSE [kVar]	4550	4418	4411
Fattore di potenza medio all'uscita dalle SSE	0.932	0.935	0.936
Rendimento medio della linea di contatto [%]	98.47	98.73	98.75
Potenza reale media richiesta all'archetto [kW]	6538	6538	6538
Potenza reale media fornita all'archetto [kW]	6538	6538	6538
Corrente media fornita all'archetto [A]	268	266	266
Potenza reale massima richiesta all'archetto [kW]	15306	15306	15306
Tensione media [V]	26263	26320	26360
Tensione media UIC [V]	25678	25845	25880
Tensione minima [V]	23707	23707	24156

Tab. 47 – Risultati globali, Fuori servizio SSE – Verso Dispari – Traffico ore 19:00

La successiva tabella riassume i valori di potenza media assorbita, relativi agli autotrasformatori presenti in linea, in relazione al degrado di SSE analizzato, nella quale si riscontra che tutte le macchine funzionano sempre al di sotto della potenza nominale di 12 MVA.

	Potenza [kW]			
	SSE	fuori servizio		
Autotrasformatore	SJ de Maurienne	Modane	Susa	
10 + 437	5555	4125	4125	
18 +090	4235	4180	4180	
26 + 757	4125	5500	5500	
41 +839	1210	1210	660	
48 + 506	825	825	715	
55 + 166	660	660	440	
0 + 244 ICD	1045	1045	1100	

Tab. 48 – Potenza autotrasformatori, Fuori servizio SSE – Verso Dispari – Traffico ore 19:00

Il valore <u>minimo di tensione</u> per il verso dispari (St. Jean de Maurienne \rightarrow Susa) di 23707 V, localizzato al km 0 + 571, ed il valore minimo della <u>tensione media UIC</u> di 25678 V, si riscontrano nel caso di fuori servizio della SSE St. Jean de Maurienne. Comunque tali valori di tensione restano ampiamente superiori ai rispettivi limiti normativi (V_{MIN} = 17500 V; V_{UIC} = 22500 V).

Fig. 28 – Distribuzione globale tensioni all'archetto, SSE SJ de Maurienne fuori servizio – Verso Dispari Traffico ore 19:00

Fig. 29 – Distribuzione globale tensioni all'archetto, SSE Modane fuori servizio – Verso Dispari Traffico ore 19:00

Fig. 30 – Distribuzione globale tensioni all'archetto, SSE Susa fuori servizio– Verso Dispari Traffico ore 19:00

Dalle distribuzioni percentuali di tensione all'archetto sopra riportate, si denota come nel caso di fuori servizio completo della SSE di St. Jean de Maurienne (situazione più critica per il verso dispari), la tensione all'archetto risulti essere comunque maggiormente compresa in termini percentuali, nella fascia di tensione 26000-25000 V e superiori a 26000 V. I valori di tensione più bassi (12.2 %) risultano essere registrati nella fascia di tensione 25000-24000 V.

CONDIZIONE DI DEGRADO COMPLETO DI UNA SSE – TRAFFICO DI TAPPA 1 – ORE 19:00 – VERSO PARI

Nelle Tab. 49 e Tab. 50 sono riportati i valori di potenza assorbita dalla rete primaria e sugli avvolgimenti del trasformatore di trazione, in relazione al degrado di SSE analizzato e nel verso di percorrenza Pari. I valori di potenza media e media quadratica sono calcolati considerando l'intero intervallo dell'ora simulata.

	Potenza assorbita dalla primaria [kVA]					
	SJ de N	Jaurienne	M	odane	S	Susa
SSE Fuori Servizio	Media	Massima	Media	Massima	Media	Massima
SJ de Maurienne			3819	21130	19888	38885
Modane	3855	23029			19888	38885
Susa	3855	23029	19777	37307		

Tab. 49 – Potenza fornita dalla rete primaria in caso di degrado di SSE – Verso Pari – Traffico ore 19:00

			Potenza media quadi	catica avvolgime	nti di trafo [kVA]
SSE Fuori Servizio	Avvolgin	nenti	SJ de Maurienne	Modane	Susa
	Prima	rio		5197	26812
SJ de Maurienne	Sacondaria	LC		3327	15619
	Secondario	Feeder		1925	11247
	Prima		5280		26812
Modane	Secondario	LC	2887		15619
		Feeder	2392		11247
	Prima	rio	5280	23292	
Susa	Secondario	LC	2887	13750	
		Feeder	2392	9652	

Tab. 50 – Potenza media quadratica avvolgimenti – Verso Pari – Traffico ore 19:00

Si riportano nella seguente tabella i risultati globali delle simulazioni in relazione al degrado di SSE analizzato.

	SSE fuori servizio		
	SJ de Maurienne	Modane	Susa
Potenza media assorbita dal sistema [kVA]	23706	23742	23632
Potenza massima assorbita dal sistema [kVA]	45766	45758	44623
Potenza reale media fornita complessivamente dalle SSE [kW]	20989	21005	21035
Potenza specifica corrispondente [MW/km linea]	0.36	0.36	0.361
Potenza reattiva media fornita da tutte le SSE [kVar]	8370	8429	8545
Fattore di potenza medio all'uscita dalle SSE	0.928	0.928	0.926
Rendimento medio della linea di contatto [%]	98.16	98.08	97.95
Potenza reale media richiesta all'archetto [kW]	9482	9482	9482
Potenza reale media fornita all'archetto [kW]	94.81	9481	9482
Corrente media fornita all'archetto [A]	397	397	396
Potenza reale massima richiesta all'archetto [kW]	15310	15310	15310
Tensione media [V]	25723	25680	25724
Tensione media UIC [V]	25146	25107	25230
Tensione minima [V]	21623	21623	23158

Tab. 51 – Risultati globali, Fuori servizio SSE – Verso Pari – Traffico ore 19:00

La successiva tabella riassume i valori di potenza media assorbita, relativi agli autotrasformatori presenti in linea, in relazione al degrado di SSE analizzato, dove si riscontra che tutte le macchine funzionano sempre al di sotto della potenza nominale di 12 MVA.

	Potenza [kW]				
	SSE fuori servizio				
Autotrasformatore	SJ de Maurienne	Modane	Susa		
10 + 437	1210	1045	1045		
18 +090	1320	1430	1430		
26 + 757	1705	2640	2640		
41 +839	8305	8305	5775		
48 + 506	5610	5610	5005		
55 + 166	6105	6105	5445		
0 + 175 ICP	3740	3740	5225		

Tab. 52 – Potenza autotrasformatori, Fuori servizio SSE – Verso Pari – Traffico ore 6:00

Il valore <u>minimo di tensione</u> per il verso pari (Susa \rightarrow St. Jean de Maurienne) di 21623 V, localizzato al km 26 + 377, ed il valore minimo della <u>tensione media UIC</u> di 25107 V, si riscontrano nel caso di fuori servizio della SSE Modane. Comunque tali valori di tensione restano ampiamente superiori ai rispettivi limiti normativi (V_{MIN} = 17500 V; V_{UIC} = 22500 V).

Fig. 31 – Distribuzione globale tensioni all'archetto, SSE SJ de Maurienne fuori servizio – Verso Pari Traffico ore 19:00

Fig. 32 – Distribuzione globale tensioni all'archetto, SSE Modane fuori servizio – Verso Pari Traffico ore 19:00

Fig. 33 – Distribuzione globale tensioni all'archetto, SSE Susa fuori servizio– Verso Pari Traffico ore 19:00

Dalle distribuzioni percentuali di tensione all'archetto sopra riportate, si denota come nel caso di fuori servizio completo della SSE di Modane (situazione più critica per il verso pari), la tensione all'archetto risulti essere comunque maggiormente compresa in termini percentuali, nella fascia di tensione 26000-25000 V e superiori a 26000 V. I valori di tensione più bassi (0.7 %) risultano essere registrati nella fascia di tensione 22000-21000 V.

6.5 CONDIZIONI DI DEGRADO COMPLETO DI UN PATS

Per l'analisi di degrado di un autotrasformatore, è stato considerando il traffico delle ore 6:00 per il verso dispari e quello delle ore 19:00 per il verso pari, mantenendo separata l'alimentazione delle due direzioni. Inoltre è stato posto fuori servizio l'autotrasformatore situato nella sezione in cui in condizione di normale funzionamento, si registra la tensione minima al pantografo. La configurazione analizzata risulta quindi quella rappresentata in Fig. 34, dove è stato posto fuori servizio il posto di autotrasformazione pari/dispari situato al km 26+757.

Fig. 34 – Condizione di degrado completo di un PATS

Di seguito si riportano i valori di <u>tensione media UIC</u> e <u>tensione minima</u> risultanti dall'analisi simulativa.

		TENSIONE MEDIA UIC LIMITE NORMATIVO: 22500 V
		PATS fuori servizio
PARI	[V]	26070
DISPARI	[V]	24935

Tab. 53 – Tensione media UIC, Fuori servizio PATS

Tab. 54 – Tensione minima, Fuori servizio PATS

Nel caso di fuori servizio di un autotrasformatore, le tensioni medie UIC e minime assolute sono ampiamente maggiori dei limiti imposti dalle norme di riferimento (V_{UIC} =22500 V; V_{MIN} =17500 V).

Autotrasformatore	Potenza [kW]
10 + 437	8140
18 + 090	14355
41 + 839	770
48 + 506	1210
48 + 839	275
55 + 166	605
0 + 244 ICD	1155

Tab. 55 – Potenza autotrasformatori – Binario Dispari – Traffico tappa 1 – Ore 6:00

Autotrasformatore	Potenza [kW]
10 + 437	1485
18 +090	3300
41 +839	5280
48 + 506	4015
48 + 839	4180
55 + 166	5335
0 + 175 ICP	2970

Tab. 56 – Potenza autotrasformatori – Binario Pari – Traffico tappa 1 – Ore 19:00

Le Tab. 55 e Tab. 56 riportano i valori di potenza media assorbita dagli autotrasformatori che alimentano rispettivamente il verso di percorrenza dispari e pari, dalle quali si riscontra che non si verificano sovraccarichi per il verso pari, mentre per il verso dispari risulta in sovraccarico l'autotrasformatore situato nella pk 18+090. Per rispristinare il funzionamento della macchina al di sotto della potenza nominale, risulta necessario la messa in parallelo dei due autotrasformatori del PATD (pk 18+090 / 18+421).

Comunque sono state effettuate anche le simulazioni del fuori servizio dei restanti PATS e non si sono presentati problemi di sovraccarico degli autotraformatori e di tensione in linea.

6.6 ANALISI TERMICA DELLA CATENARIA

Scopo di questa sezione è l'analisi termica dei conduttori, cioè determinare il surriscaldamento provocato dal passaggio della corrente di trazione e verificare che la temperatura massima raggiunta dalla catenaria sia contenuta entro gli 80°C, così come previsto dalla norma di riferimento CEI EN 50119.

L'analisi è stata realizzata considerando le condizioni più gravose (a favore della sicurezza), cioè con il degrado di SSE che determina la maggiore corrente sulla catenaria ed i risultati dei calcoli termici in assenza di refrigerazione.

In particolare le condizioni che determinano la massima corrente sulla catenaria sono per il verso dispari con il fuori servizio della SSE di St. Jean de Maurienne (Fig. 35) e per il verso pari con il fuori servizio della SSE di Susa (Fig. 36).

Fig. 35 – Verso Dispari, cella con la maggiore corrente sulla catenaria

Fig. 36 – Verso Pari, cella con la maggiore corrente sulla catenaria

Nella tabella sottostante sono riportate per le celle evidenziate, le correnti medie quadratiche nei componenti della catenaria.

	Corrente media quadratica [A]		
	Verso Dispari	Verso Pari	
Corda portante	314	275	
Filo di contatto	257	225	
Feeder	412	351	

Tab. 57 - Correnti medie quadratiche nei componenti della catenaria

Assumendo che la temperatura massima sia a livello cautelativo per entrambi i tunnel pari a 32°C, si riportano di seguito gli andamenti di sovratemperatura in relazione ai distinti traffici, presi come riferimento per i due versi di percorrenza.

Fig. 37 – Evoluzione della sovratemperatura, filo di contatto verso dispari

Fig. 38 – Evoluzione della sovratemperatura, corda portante verso dispari

Fig. 39 – Evoluzione della sovratemperatura, feeder verso dispari

Fig. 40 – Evoluzione della sovratemperatura, filo di contatto verso pari

Fig. 41 – Evoluzione della sovratemperatura, corda portante verso pari

Fig. 42 – Evoluzione della sovratemperatura, feeder verso pari

Nella tabella sottostante sono riassunte le massime sovratemperature nei componenti della catenaria.

	Sovratemperatura [°C]	
	Verso Dispari	Verso Pari
Corda portante	22,42	19,65
Filo di contatto	16,47	14,87
Feeder	13,95	11,25

Tab. 58 – Sovratemperature massime

Considerando la temperatura massima prevista per i due tunnel di 32°C, per entrambe le catenarie i valori di sovratemperatura (Tab. 58) sono tali da evitare che i conduttori raggiungano un livello di temperatura superiore al limite previsto dalla normativa di riferimento.

7. CONCLUSIONI

In base alle simulazioni effettuate e alle configurazioni di rete analizzate, l'architettura di sistema, già indicata nella fase di progettazione preliminare (*PP2-C2B-TS3-0033-A-PA-NOT – Relazione tecnica di dimensionamento del sistema di trazione*), risulta adeguata all'alimentazione dei traffici previsti negli scenari infrastrutturali di prima e di terza fase.

In particolare in prima fase, le simulazioni mostrano la possibilità di alimentare i due tunnel ferroviari in <u>maniera</u> indipendente, sia nel normale funzionamento degli impianti, sia al verificarsi del fuori servizio di una sottostazione elettrica, in quanto le prestazioni del sistema risultano essere adeguate in termini di qualità delle tensioni fornite al pantografo dei treni, e quindi di performance di marcia, il rendimento della linea di contato si mantiene a valori elevati (0.923 - 0.99) ed è inoltre garantita la compatibilità del carico elettrico su tutti gli impianti fissi.

In condizione di degrado del PATS alla pk 26+757, lato dispari, risulta essere necessario la messa in parallelo dei due autotrasformatori del PADS posti nelle pk 18+090 / 18+421, onde eliminare lo stato di sovraccarico della macchina limitrofa al disservizio (pk 18+090). Negli altri casi di degrado dei PATS, il sistema garantisce il funzionamento dei restanti autotrasformatori al di sotto della potenza nominale.

Inoltre l'analisi termica, valutata nelle condizioni più gravose, dimostra che i valori di sovratemperatura relativa ai componenti costituenti la catenaria, risultino essere conformi ai valori imposti dalle normative di riferimento.

Fig. 43 – Potenza apparente assorbita dalla SSE di St. Jean de Maurienne – Traffico di tappa 1 – Ore 6:00 Normale servizio delle SSE
PRINCIPES DE DIMENSIONNEMENT / RELAZIONE TECNICA GENERALE DI DIMENSIONAMENTO

Per quanto riguarda gli squilibri di tensione arrecati dalle SSE, alle reti di altissima tensione, la sottostazione elettrica di St. Jean de Maurienne, già con il traffico previsto di prima fase e nel funzionamento normale di regime (Fig. 14), assorbe una potenza massima monofase di circa 51 MVA ed una potenza media quadratica per 10 minuti superiore al limite fornito da LTF di 32 MVA (Fig. 43). Una possibile architettura di alimentazione che ridurrebbe la potenza erogata dalla SSE di St. Jean de Maurienne, è quella che vede la SSE di Modane alimentare due sezioni di linea e delimitate dai tratti neutri situati nelle pk 18+165 e pk 48+673 (tipo schema AV italiano). Tale provvedimento non risulta risolutivo, in quanto proprio con il fuori servizio di Modane, si ripresenta lo scenario precedente. Quindi per la SSE di St. Jean de Maurienne risulta necessario, anche in prima fase, l'installazione dello static var compensator (SVC), onde ripristinare il fattore di squilibrio delle tensioni nel range consentito.

Fig. 44 – Potenza apparente assorbita dalla SSE Modane – Traffico di tappa 1 – Ore 19:00 Fuori servizio della SSE di Susa

Mentre per quanto riguarda la SSE di Modane, in prima fase lo static var compensator non risulta essere necessario, in quanto la potenza massima monofase assorbita, nel caso di fuori servizio della SSE di Susa, risulta di 48 MVA (Fig. 35) e quindi la potenza media quadratica per 10 minuti risulta sicuramente inferiore al limite di 53 MVA.